Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.543
Filter
1.
PeerJ ; 12: e17250, 2024.
Article in English | MEDLINE | ID: mdl-38726376

ABSTRACT

Herbal infusions exhibit diverse pharmacological effects, such as antioxidant, anti-inflammatory, anticancer, antihypertensive, and antineurodegenerative activities, which can be attributed to the high content of phenolic compounds (e.g., caffeoylquinic acids (CQAs)). In this study, we used ultraperformance liquid chromatography to determine the content of CQAs in the methanolic extracts of model herbs, namely, yerba mate (Ilex paraguariensis), stevia (Stevia rebaudiana), and Indian camphorweed (Pluchea indica (L.) Less.). The results revealed that yerba mate had the highest total CQA content (108.05 ± 1.12 mg/g of dry weight). Furthermore, we evaluated the effect of brewing conditions and storage at 4 °C under dark and light conditions on the antioxidant property and total phenolic and CQA contents of a yerba mate infusion. The analysis of the yerba mate infusions prepared with different steeping times, dried leaf weights, and water temperatures revealed that the amount of extracted CQAs was maximized (∼175 mg/150 mL) when 6 g of dried leaves were steeped in hot water for 10 min. A total of 10-day refrigerated storage resulted in no significant changes in the antioxidant activity and total phenolic and CQA contents of an infusion kept in a brown container (dark). However, the antioxidant properties and total phenolic and CQA contents were negatively affected when kept in a clear container, suggesting the detrimental effect of light exposure. Our study provides practical recommendations for improving the preparation and storage of herbal infusions, thus catering to the needs of consumers, food scientists, and commercial producers. Moreover, it is the first study of the influence of light exposure on the content of crucial quality attributes within plant-based beverages.


Subject(s)
Antioxidants , Ilex paraguariensis , Plant Extracts , Quinic Acid , Stevia , Ilex paraguariensis/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Quinic Acid/analogs & derivatives , Quinic Acid/analysis , Stevia/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Phenols/analysis , Cold Temperature , Plant Leaves/chemistry , Drug Storage
2.
Trop Anim Health Prod ; 56(4): 156, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727858

ABSTRACT

The current study aimed to determine the polyphenol compounds in Nigella sativa (NS) and Eruca sativa (ES) seeds, and evaluate the impact of their addition either as a sole additive or in combination on the growth performance, digestibility, some rumen and blood parameters and antioxidative status of Barki lambs. Forty-eight male lambs (27.18 ± 0.22 kg, 5-6 months), were divided into 4 balanced groups. The experimental diets were randomly distributed to the control group (CON); fed alfalfa hay plus concentrate feed mixture at a ratio of 30:70% without additives, while, NSD, ESD, and NESD groups: fed CON diet plus 2% NS, 2% ES or 1% NS + 1% ES, respectively as a ratio from total mixed ration (TMR). Results indicated that rutin and catechin were the most phenolic compounds observed either in NS or ES seeds. The NS and ES-supplemented groups recorded the highest (P < 0.05) values for dry matter digestibility, nutritive values, average daily gain, and the best feed conversion ratio. However, growth performance, nutritive value, and all nutrient digestibility except for dry matter were not significantly altered with the NESD group. Concentrations of ruminal NH3-N and TVFA were significantly (P < 0.05) reduced with the NESD group, with no significant differences in pH values among different groups. Values of blood parameters showed significant increases in WBCs, PCV, and T-AOC, and decreases in cholesterol, triglycerides, and MDA with the addition of NS and ES seeds or both. Therefore, the addition of NS and ES seeds is recommended to improve lambs' health and antioxidant status.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Antioxidants , Diet , Dietary Supplements , Digestion , Nigella sativa , Seeds , Sheep, Domestic , Animals , Nigella sativa/chemistry , Animal Feed/analysis , Male , Seeds/chemistry , Antioxidants/metabolism , Antioxidants/analysis , Dietary Supplements/analysis , Diet/veterinary , Digestion/drug effects , Sheep, Domestic/growth & development , Sheep, Domestic/physiology , Rumen/metabolism , Brassicaceae/chemistry , Random Allocation , Nutrients/analysis , Nutrients/metabolism
3.
Food Res Int ; 186: 114379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729702

ABSTRACT

The relationship between the chemical composition and quality of Lushan Yunwu tea (LYT) from different geographical origins is not clear. Sensory evaluation, metabolomics analyses combined with chemometrics were conducted on LYT from 8 different geographical origins, and altitude was identified as the main factor responsible for the differences among LYT. A total of 32 non-volatile and 27 volatile compounds were identified as marker metabolites to distinguish the origins of high altitudes from those of low altitudes. LYT samples from higher altitude areas contained more free amino acids, sugars, and organic acids, and less catechins, which may contribute to the reduction of bitterness and astringency and the enhancement of umami. The contents of geranylacetone, ethyl hexanoate, ethyl caprylate, 3-carene, d-cadinene, linalool, nerol, and nerolidol in high altitude areas were higher than those in low altitude areas, indicating that LYT from high altitude had strong floral and fruity aroma. The altitudes were positively correlated with pH value, total flavonoids, soluble protein, total free amino acids, and the antioxidant capacities of the LYT. This study provided a theoretical basis for the study of the effect of altitude on tea quality.


Subject(s)
Altitude , Metabolomics , Tea , Volatile Organic Compounds , Tea/chemistry , Volatile Organic Compounds/analysis , Humans , Odorants/analysis , Taste , Antioxidants/analysis , Camellia sinensis/chemistry , Amino Acids/analysis , Flavonoids/analysis , Male , China , Female
4.
Food Res Int ; 186: 114356, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729722

ABSTRACT

The quality of Pacific oyster (Crassostrea gigas) can be affected by many factors during depuration, in which temperature is the major element. In this study, we aim to determine the quality and plasmalogen changes in C. gigas depurated at different temperatures. The quality was significantly affected by temperature, represented by varying survival rate, glycogen content, total antioxidant capacity, alkaline phosphatase activity between control and stressed groups. Targeted MS analysis demonstrated that plasmalogen profile was significantly changed during depuration with PUFA-containing plasmalogen species being most affected by temperature. Proteomics analysis and gene expression assay further verified that plasmalogen metabolism is regulated by temperature, specifically, the plasmalogen synthesis enzyme EPT1 was significantly downregulated by high temperature and four plasmalogen-related genes (GPDH, PEDS, Pex11, and PLD1) were transcriptionally regulated. The positive correlations between the plasmalogen level and quality characteristics suggested plasmalogen could be regarded as a quality indicator of oysters during depuration.


Subject(s)
Crassostrea , Plasmalogens , Temperature , Animals , Plasmalogens/metabolism , Plasmalogens/analysis , Crassostrea/genetics , Crassostrea/metabolism , Shellfish/analysis , Proteomics/methods , Antioxidants/metabolism , Antioxidants/analysis , Alkaline Phosphatase/metabolism , Food Quality
5.
Food Res Int ; 186: 114363, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729725

ABSTRACT

This study evaluates the impact of high-intensity ultrasound (HIU) on the physicochemical properties and in-vitro digestibility of Atlantic cod (Gadus morhua). Various ultrasound durations (0-60 min) were applied to assess changes in color attributes, total antioxidant capacity (TAC), total flavonoid content (TFC), total phenolic content (TPC), total protein content, and in-vitro protein digestibility (IVPD). Results indicated HIU maximumly increased TAC, TFC, TPC, and peptide content before digestion by 7.28 % (US60), 3.00 % (US30), 32.43 % (US10), and 18.93 % (US60), respectively. While HIU reduced total protein content, it enhanced IVPD by up to 12.24 % (US30). Color attributes electron microscopy reflected structural changes in the cod samples, suggesting the effectiveness of HIU in altering protein structures. These findings highlight HIU's potential as a non-thermal technique for improving the sensory and nutritional quality of Atlantic cod, offering valuable insights for the seafood processing industry and consumers.


Subject(s)
Antioxidants , Digestion , Food Handling , Gadus morhua , Nutritive Value , Seafood , Gadus morhua/metabolism , Animals , Seafood/analysis , Antioxidants/analysis , Antioxidants/chemistry , Food Handling/methods , Phenols/analysis , Ultrasonic Waves , Flavonoids/analysis , Nutrients/analysis , Taste , Color
6.
Food Res Int ; 186: 114376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729723

ABSTRACT

Commercial beef burgers and vegan analogues were purchased and, after a microwave treatment, they were submitted to an in vitro digestion (INFOGEST). Vegan cooked burgers showed similar protein content (16-17 %) but lower amounts of total peptides than beef burgers. The protein digestibility was higher in beef burgers. Peptide amounts increased during in vitro digestion, reaching similar amounts in both types of products in the micellar phase (bioaccessible fraction). The fat content in cooked vegan burgers was significantly lower than in beef burgers (16.7 and 21.2 %, respectively), with a higher amount of PUFAs and being the lipolysis activity, measure by FFA, less intense both after cooking and after the gastrointestinal process. Both types of cooked samples showed high carbonyl amounts (34.18 and 25.51 nmol/mg protein in beef and vegan samples, respectively), that decreased during in vitro digestion. On the contrary, lipid oxidation increased during gastrointestinal digestion, particularly in vegan samples. The antioxidant capacity (ABTS and DPPH) showed higher values for vegan products in cooked samples, but significantly decreased during digestion, reaching similar values for both types of products.


Subject(s)
Cooking , Digestion , Microwaves , Red Meat , Cooking/methods , Red Meat/analysis , Animals , Cattle , Antioxidants/analysis , Meat Products/analysis , Lipolysis , Diet, Vegan
7.
Braz J Biol ; 84: e276161, 2024.
Article in English | MEDLINE | ID: mdl-38747857

ABSTRACT

The objective was to evaluate the behavior of melon genotypes (Cucumis melo L.) in the physical, chemical and biochemical quality of melon fruits as a function of electrical conductivity irrigation water levels (ECw). The experimental design adopted was randomized blocks in a 5 x 3 factorial scheme with five replications. The first factor was represented by five salinity levels (0.5, 1.5, 3.0, 4.5, and 6.0 dS m-1) and the second factor by accessions A35, and A24, and the hybrid Sancho. The physical, chemical and biochemical variables showed a reduction in production, with smaller fruits, with less weight, smaller cavity, with increased pulp thickness for Sancho. Vitamin C and yellow flavonoids increased indicating antioxidant power against ROS. The genotypes showed similar post-harvest behavior, however, the hybrid Sancho stood out over the others, possibly because it is an improved material. Accession A24 presented physiological and biochemical responses that classify it as intolerant.


Subject(s)
Fruit , Salinity , Fruit/chemistry , Genotype , Cucumis melo/physiology , Cucumis melo/classification , Agricultural Irrigation , Cucurbitaceae/classification , Cucurbitaceae/physiology , Cucurbitaceae/genetics , Antioxidants/analysis
8.
Sci Rep ; 14(1): 11082, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38744893

ABSTRACT

To investigate the effect of horsetail extract containing high silicon on morphological traits, growth, content, and compositions of essential oil of sweet basil (Ocimum basilicum L.) an experiment turned into carried out in the shape of a randomized complete block design with three replications. Foliar treatment of horsetail extract with zero, 0.5, 1, and 2% concentrations was applied on 6-8 leaf plants. The assessed traits include plant height, number of leaves per plant, number of sub-branches, leaf area index, plant fresh weight, plant dry weight, total anthocyanin, the content of total phenol and total flavonoid, antioxidant activity, essential oil content, and compounds were measured. The findings demonstrated that the increase of silicon-containing horsetail extract enhanced the improved increase in growth and phytochemical trait values. The use of horsetail extract in the 2% treatment increased plant height, the number of leaves per plant, the number of sub-branches, leaf area index, fresh weight, and dry weight of the plant by 49.79, 45.61, 91.09, 99.78, 52.78 and 109.25%, respectively, compared to the control. The highest content of total phenol (2.12 mg GAE/g DW), total flavonoid (1.73 mg RE/g DW), total anthocyanin (0.83 mg C3G/g DW), and antioxidant activity (184.3 µg/ml) was observed in the 2% extract treatment. The content of essential oil increased with increasing the concentration of horsetail extract, so the highest amount of essential oil was obtained at the concentration of 2%, which increased by 134.78% compared to the control. By using GC-MS, the essential oil was analyzed. The main components of the essential oil include methyl eugenol (12.93-25.93%), eugenol (17.63-27.51%), 1,8-cineole (15.63-20.84%), linalool (8.31-19.63%) and (Z)-caryophyllene (6.02-14.93%). Increasing the concentration of horsetail extract increased the compounds of eugenol, 1,8-cineole, and linalool in essential oil compared to the control, but decreased the compounds of methyl eugenol and (Z)-caryophyllene. Foliar spraying of horsetail extract, which contains high amounts of silicon, as a stimulant and biological fertilizer, can be a beneficial ingredient in increasing the yield and production of medicinal plants, especially in organic essential oil production.


Subject(s)
Antioxidants , Ocimum basilicum , Oils, Volatile , Plant Extracts , Plant Leaves , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Ocimum basilicum/chemistry , Ocimum basilicum/growth & development , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/analysis , Antioxidants/pharmacology , Plant Leaves/chemistry , Plant Leaves/growth & development , Flavonoids/analysis , Phenols/analysis , Anthocyanins/analysis
9.
J Agric Food Chem ; 72(19): 11278-11291, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38708781

ABSTRACT

Moringa seeds are an excellent dietary source of phytochemicals (i.e., glucosinolates, GSLs; isothiocyanates, ITCs) with health-beneficial effects. Although numerous studies have been conducted on moringa seeds, the effect of germination on the regulation of GSLs remains scarcely explored. The present study investigated the dynamic changes of GSLs in moringa seeds during germination (at 25, 30, and 35 °C for 6 days in the dark) through an untargeted metabolomics approach and compared the antioxidant capacity of ungerminated and germinated moringa seeds. Our results showed that germination significantly increased the total GSL content from 150 (day 0) to 323 µmol/g (35 °C, day 6) on a dry weight (DW) basis, especially glucomoringin (GMG), the unique glucosinolate in moringa seeds, which was significantly upregulated from 61 (day 0) to 149 µmol/g DW (35 °C, day 4). The upregulation of GMG corresponded to the metabolism of tyrosine, which might be the initial precursor for the formation of GMG. In addition, germination enhanced the total ITC content from 85 (day 0) to 239 µmol SE/g DW (35 °C, day 6), indicating that germination may have also increased the activity of myrosinase. Furthermore, germination remarkably increased the total phenolic content (109-507 mg GAE/100 g DW) and antioxidant capacity of moringa seeds. Our findings suggest that moringa sprouts could be promoted as a novel food and/or ingredient rich in GMG.


Subject(s)
Germination , Glucosinolates , Moringa , Seeds , Tyrosine , Seeds/chemistry , Seeds/metabolism , Seeds/growth & development , Tyrosine/metabolism , Tyrosine/analysis , Moringa/chemistry , Moringa/metabolism , Moringa/growth & development , Glucosinolates/metabolism , Glucosinolates/analysis , Glucosinolates/chemistry , Antioxidants/metabolism , Antioxidants/chemistry , Antioxidants/analysis
10.
J Mass Spectrom ; 59(6): e5033, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38726726

ABSTRACT

A total of 43 compounds, including phenolic acids, flavonoids, lignans, and diterpene, were identified and characterized using UPLC-ESI-Q-TOF-MS coupled with UNIFI software. The identified flavonoids were mostly isomers of luteolin, apigenin, and quercetin, which were elucidated and distinguished for the first time in pepper cultivars. The use of multivariate data analytics for sample discrimination revealed that luteolin derivatives played the most important role in differentiating pepper cultivars. The content of phenolic acids and flavonoids in immature green peppers was generally higher than that of mature red peppers. The pepper extracts possessed significant antioxidant activities, and the antioxidant activities correlated well with phenolic contents and their molecular structure. In conclusion, the findings expand our understanding of the phytochemical components of the Chinese pepper genotype at two maturity stages. Moreover, a UPLC-ESI-Q-TOF-MS in negative ionization mode rapid methods for characterization and isomers differentiation was described.


Subject(s)
Antioxidants , Capsicum , Phenols , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Antioxidants/chemistry , Antioxidants/analysis , Antioxidants/pharmacology , Chromatography, High Pressure Liquid/methods , Capsicum/chemistry , Isomerism , Phenols/chemistry , Phenols/analysis , Flavonoids/chemistry , Flavonoids/analysis , Plant Extracts/chemistry , East Asian People
11.
Sci Rep ; 14(1): 10052, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698117

ABSTRACT

The Apiaceae family contains many species used as food, spice and medicinal purposes. Different parts of plants including seeds could be used to obtain essential (EO) oils from members of the Apiaceae family. In the present study, EOs were components obtained through hydrodistillation from the seeds of anise (Pimpinella anisum), carrot (Daucus carota), celery (Apium graveolens), dill (Anethum graveolens), coriander (Coriandrum sativum), fennel (Foeniculum vulgare), and cumin (Cuminum cyminum). EO constituents were determined with Gas Chromatography/Mass Spectrometry (GC-MS) and Gas Chromatography/Flame Ionization Detector (GC-FID) and their antioxidant capacities were determined with the cupric reducing antioxidant capacity (CUPRAC) and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) methods. The antimicrobial activity of EOs were tested against four pathogenic bacteria. Phenylpropanoids in anise (94.87%) and fennel (92.52%), oxygenated monoterpenes in dill (67.59%) and coriander (98.96%), monoterpene hydrocarbons in celery (75.42%), mono- (45.42%) and sesquiterpene- (43.25%) hydrocarbons in carrots, monoterpene hydrocarbon (34.30%) and aromatic hydrocarbons (32.92%) in cumin were the major compounds in the EOs. Anethole in anise and fennel, carotol in carrot, limonene in celery, carvone in dill, linalool in coriander, and cumin aldehyde in cumin were predominant compounds in these EOs. The high hydrocarbon content in cumin EO gave high CUPRAC activity (89.07 µmol Trolox g-1), and the moderate monoterpene hydrocarbon and oxygenated monoterpene content in dill EO resulted in higher DPPH activity (9.86 µmol Trolox g-1). The in vitro antibacterial activity of EOs against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli was evaluated using the agar diffusion method and the minimum bactericidal concentration was determined. Coriander, cumin and dill EOs showed inhibitory effect against all tested strains except P. aeruginosa. While fennel and celery EOs were effective against E. coli and B. cereus strains, respectively, anise and carrot EOs did not show any antibacterial effect against the tested bacteria. Hierarchical Cluster Analysis (HCA) produced four groups based on EO constituents of seven species. The potential adoption of the cultivated Apiaceae species for EO extraction could be beneficial for the wild species that are endangered by over collection and consumption.


Subject(s)
Antioxidants , Apiaceae , Daucus carota , Foeniculum , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/analysis , Apiaceae/chemistry , Daucus carota/chemistry , Foeniculum/chemistry , Cuminum/chemistry , Gas Chromatography-Mass Spectrometry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Coriandrum/chemistry , Seeds/chemistry , Anethum graveolens/chemistry , Pimpinella/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Apium/chemistry
12.
J Oleo Sci ; 73(5): 637-644, 2024.
Article in English | MEDLINE | ID: mdl-38692888

ABSTRACT

Epoxy fatty acid formation during heating was estimated using triolein (OOO) and trilinolein (LLL). Epoxy octadecanoic acids were found in heated OOO, while epoxy octadecenoic acids were found in heated LLL. The content of epoxy fatty acids increased with heating time, and trans-epoxy fatty acids were formed significantly more than cis-epoxy fatty acids. A comparison between OOO and LLL indicated that epoxy fatty acid formation was higher in the OOO than that in the LLL. Heating tests in the presence of α- tocopherol suggested that the formation of epoxy fatty acids could be suppressed by antioxidants.


Subject(s)
Antioxidants , Epoxy Compounds , Fatty Acids , Hot Temperature , Triglycerides , Fatty Acids/analysis , Antioxidants/analysis , Triglycerides/analysis , Triglycerides/chemistry , alpha-Tocopherol/analysis , Triolein/chemistry , Time Factors
13.
Anal Chim Acta ; 1308: 342664, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38740454

ABSTRACT

Nanozymes is a kind of nanomaterials with enzyme catalytic properties. Compared with natural enzymes, nanozymes merge the advantages of both nanomaterials and natural enzymes, which is highly important in applications such as biosensing, clinical diagnosis, and food inspection. In this study, we prepared ß-MnOOH hexagonal nanoflakes with a high oxygen vacancy ratio by utilizing SeO2 as a sacrificial agent. The defect-rich MnOOH hexagonal nanoflakes demonstrated excellent oxidase-like activity, catalyzing the oxidation substrate in the presence of O2, thereby rapidly triggering a color reaction. Consequently, a colorimetric sensing platform was constructed to assess the total antioxidant capacity in commercial beverages. The strategy of introducing defects in situ holds great significance for the synthesis of a series of high-performance metal oxide nanozymes, driving the development of faster and more efficient biosensing and analysis methods.


Subject(s)
Antioxidants , Manganese Compounds , Oxides , Oxides/chemistry , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/analysis , Manganese Compounds/chemistry , Colorimetry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Oxidation-Reduction , Nanostructures/chemistry , Catalysis
14.
Nutrients ; 16(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732517

ABSTRACT

Acne vulgaris (AV) significantly reduces the quality of life (QoL) of young people, so it is important to look for factors that can improve their QoL. The aim of this study was to assess the relationship between dietary antioxidants measured using the new DAQI index and QoL measured using standardized tests. The DAQI included the following elements: antioxidant vitamins, minerals, carotenoids, polyphenols, phytosterols, lignans, and the total antioxidant capacity of the diet. The study involved 165 young women with AV, mainly students. A self-report survey was used to collect basic data on their sociodemographic status, anthropometric information, and lifestyle. The energy value of the diet and the content of vitamins, minerals, and carotenoids with antioxidant activity in the diet were estimated using 3-day food diaries and the Diet 6.0 program. The antioxidant potential of the diet and the content of polyphenols, phytosterols, lignans, and selenium were calculated based on the consumption of individual food products and available databases. The results of this study showed that the QoL of the young women with AV was impaired. However, greater adherence to an antioxidant diet reduces the risk of AV impact on the QoL by approximately 30-32% and the risk of depression by 33%. The DAQI may be used as a new indicator of diet quality in acne vulgaris.


Subject(s)
Acne Vulgaris , Antioxidants , Diet , Quality of Life , Humans , Female , Antioxidants/analysis , Antioxidants/administration & dosage , Acne Vulgaris/psychology , Acne Vulgaris/diet therapy , Young Adult , Adult , Adolescent , Polyphenols/administration & dosage , Carotenoids/administration & dosage
15.
Pak J Pharm Sci ; 37(1): 147-154, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741411

ABSTRACT

Zeravschania khorasanica, a species endemic to the eastern part of Iran, possesses distinct characteristics that distinguish it from its two closely related species. This research employed five different extraction techniques to identify the active components, total phenolic content and in vitro antioxidant activity of the extract. Furthermore, hydro-distillation was utilized for GC/MS analysis to determine the composition of the essential oil. The total phenolic content was estimated using the Folin-Ciocalteu assay and the antioxidant capacity was evaluated using the DPPH radical scavenging test. The findings revealed that ethanolic Soxhlet extraction yielded the highest efficiency in extracting total phenolic content (88.19 ±1.99 gallic acid mg/100g). In contrast, water maceration extraction demonstrated the highest antioxidant activity (68.1 ±5.4%). Interestingly, the study uncovered that there is no significant positive correlation between the phenolic content and the antioxidant activity of the plant. Additionally, HPLC analysis identified three phenolic constituents in the extract. The Soxhlet extraction method yielded the highest levels of chlorogenic acid (5.8 ppm), caffeic acid (4.1 ppm) and salicylic acid (10.3 ppm). As per the GC/MS analysis, a total of eleven compounds were identified. The predominant compounds were elemicin at 58.19% and trans--bergamotene at 25.78%.


Subject(s)
Antioxidants , Apiaceae , Gas Chromatography-Mass Spectrometry , Phenols , Plant Extracts , Solvents , Antioxidants/isolation & purification , Antioxidants/analysis , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/analysis , Phenols/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Iran , Solvents/chemistry , Apiaceae/chemistry , Chromatography, High Pressure Liquid , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/pharmacology , Biphenyl Compounds/chemistry , Picrates/chemistry , Caffeic Acids/isolation & purification , Caffeic Acids/analysis
16.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731535

ABSTRACT

Pre-fermentation treatment has an important impact on the color, aroma, taste, and other characteristics of fruit wine. To discover suitable pre-treatment techniques and conditions that yield strawberry wine of excellent quality, the influences of juice fermentation, pulp maceration, thermovinification, and enzymatic hydrolysis pre-treatments on the basic chemical composition, color, antioxidant capacity, and volatile organic compounds in strawberry wines were investigated. The results showed that the color, antioxidant properties, and volatile aroma of strawberry wines fermented with juice were different from those with pulp. Strawberry wines fermented from juice after 50 °C maceration had more desirable qualities, such as less methanol content (72.43 ± 2.14 mg/L) compared with pulp-fermented wines (88.16 ± 7.52 mg/L) and enzymatic maceration wines (136.72 ± 11.5 mg/L); higher total phenolic content (21.78%) and total flavonoid content (13.02%); enhanced DPPH (17.36%) and ABTS (27.55%) free radical scavenging activities; richer essential terpenoids and fatty acid ethyl esters, such as linalool (11.28%), ethyl hexanoate (14.41%), ethyl octanoate (17.12%), ethyl decanoate (32.49%), and ethyl 9-decenoate (60.64%); pleasant floral and fruity notes compared with juice-fermented wines macerated at normal temperatures; and a lighter color. Overall, juice thermovinification at 50 °C is a potential pre-treatment technique to enhance the nutrition and aroma of strawberry wine.


Subject(s)
Antioxidants , Fermentation , Fragaria , Volatile Organic Compounds , Wine , Wine/analysis , Volatile Organic Compounds/analysis , Fragaria/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Odorants/analysis , Phenols/analysis , Flavonoids/analysis , Fruit/chemistry , Color
17.
Molecules ; 29(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731592

ABSTRACT

The study aimed to determine the phenolic content and antioxidant capacity of five protein supplements of plant origin. The content and profile of phenolics were determined using the UHPLC-DAD-MS method, while antioxidant capacity (ABTS and DPPH assays) and total phenolic content (TPC) were evaluated using spectrophotometric tests. In the analyzed proteins, twenty-five polyphenols were detected, including eleven phenolic acids, thirteen flavonoids, and one ellagitannin. Hemp protein revealed the highest individual phenolics content and TPC value (1620 µg/g and 1.79 mg GAE/g, respectively). Also, hemp protein showed the highest antioxidant activity determined via ABTS (9.37 µmol TE/g) and DPPH (9.01 µmol TE/g) assays. The contents of p-coumaric acid, m-coumaric acid, kaempferol, rutin, isorhamnetin-3-O-rutinoside, kaempferol-3-O-rutinoside, and TPC value were significantly correlated with antioxidant activity assays. Our findings indicate that plant-based protein supplements are a valuable source of phenols and can also be used in research related to precision medicine, nutrigenetics, and nutrigenomics. This will benefit future health promotion and personalized nutrition in the prevention of chronic diseases.


Subject(s)
Antioxidants , Dietary Supplements , Phenols , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Phenols/analysis , Phenols/chemistry , Dietary Supplements/analysis , Flavonoids/analysis , Flavonoids/chemistry , Plant Proteins/analysis , Chromatography, High Pressure Liquid , Polyphenols/analysis , Polyphenols/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
18.
Arch Microbiol ; 206(6): 259, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739151

ABSTRACT

Nucleotides are important components and the main indicators for judging Cordyceps quality. In this paper, the mixed fermentation process of Schisandra chinensis and Cordyceps tenuipes was systematically studied, and it was proposed that the fermentation products aqueous extract (S-ZAE) had antioxidant activity and anti-AChE ability. Herein, the results of a single factor showed that S. chinensis, yeast extract, inoculum amount, and pH had significant effects on nucleotide synthesis. The fermentation process optimization results were 3% glucose, 0.25% KH2PO4, 2.1% yeast extract, and S. chinensis 0.49% (m/v), the optimal fermentation conditions were 25℃, inoculum 5.8% (v/v), pH 3.8, 6 d. The yield of total nucleotides in the scale-up culture was 0.64 ± 0.027 mg/mL, which was 10.6 times higher than before optimization. S-ZAE has good antioxidant and anti-AChE activities (IC50 0.50 ± 0.050 mg/mL). This fermentation method has the advantage of industrialization, and its fermentation products have the potential to become good functional foods or natural therapeutic agents.


Subject(s)
Antioxidants , Cordyceps , Fermentation , Nucleotides , Schisandra , Cordyceps/metabolism , Cordyceps/chemistry , Schisandra/chemistry , Schisandra/metabolism , Antioxidants/metabolism , Antioxidants/analysis , Nucleotides/metabolism , Culture Media/chemistry , Hydrogen-Ion Concentration
19.
Nutrients ; 16(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38674873

ABSTRACT

The green walnut, which is frequently overlooked in favor of its more mature sibling, is becoming a topic of great significance because of its unique ecological role, culinary flexibility, and therapeutic richness. The investigation of the bioactive substances found in green walnuts and their possible effects on human health has therapeutic potential. Juglans regia L. is an important ecological component that affects soil health, biodiversity, and the overall ecological dynamic in habitats. Comprehending and recording these consequences are essential for environmental management and sustainable land-use strategies. Regarding cuisine, while black walnuts are frequently the main attraction, green walnuts have distinct tastes and textures that are used in a variety of dishes. Culinary innovation and the preservation of cultural food heritage depend on the understanding and exploration of these gastronomic characteristics. Omega-3 fatty acids, antioxidants, vitamins, and minerals are abundant in green walnuts, which have a comprehensive nutritional profile. Walnuts possess a wide range of pharmacological properties, including antioxidant, antibacterial, antiviral, anticancer, anti-inflammatory, and cognitive-function-enhancing properties. Consuming green walnuts as part of one's diet helps with antioxidant defense, cardiovascular health, and general well-being. Juglans regia L., with its distinctive flavor and texture combination, is not only a delicious food but also supports sustainable nutrition practices. This review explores the nutritional and pharmacological properties of green walnuts, which can be further used for studies in various food and pharmaceutical applications.


Subject(s)
Antioxidants , Juglans , Nuts , Humans , Antioxidants/analysis , Fatty Acids, Omega-3/analysis , Juglans/chemistry , Nutritive Value , Nuts/chemistry , Ecology
20.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630337

ABSTRACT

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Subject(s)
Cell Death , Ethanol , Neurons , Neuroprotective Agents , Plant Extracts , Plant Leaves , Sterculia , Animals , Rats , Caspase 3/metabolism , Ethanol/administration & dosage , Ethanol/chemistry , Ethanol/toxicity , Hydrogen Peroxide/toxicity , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Oxidopamine/toxicity , Rats, Wistar , Sterculia/chemistry , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Neurons/cytology , Neurons/drug effects , Neurons/enzymology , Neurons/pathology , Lactate Dehydrogenases/metabolism , GAP-43 Protein/analysis , Apoptosis/genetics , Oxidative Stress/genetics , Cerebellum/cytology , Cerebellum/drug effects , Cerebellum/pathology , Cerebellum/physiology , Male , Female , Cells, Cultured , Cell Death/drug effects , Gene Expression Regulation/drug effects , Phytochemicals/administration & dosage , Phytochemicals/analysis , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Liquid Chromatography-Mass Spectrometry , Secondary Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...